Junjie Cao, K. Rolbiecki, Liangliang Shang and Di Zhang

1. Validation

Two simplified models of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production are considered in this validation. In both models, the lightest neutralino is the LSP and purely bino, the stau and tau sneutrino are assumed to be mass-degenerate, and the $\tilde{\tau}_1$ is assumed to be purely $\tilde{\tau}_L$. The mass of the $\tilde{\tau}_L$ state is set to be halfway between the masses of the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$. In the model characterised by $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are assumed to be pure wino and mass-degenerate. In the model where only $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production is considered, the $\tilde{\chi}_1^{\pm}$ is pure wino. Charginos and next-to-lightest neutralinos decay into the lightest neutralino via an intermediate on-shell stau or tau sneutrino, $\tilde{\chi}_1^{\pm} \to \tilde{\tau} \nu_{\tau} (\tilde{\nu}_{\tau} \tau) \to \tau \nu_{\tau} (\nu_{\tau} \tau) \tilde{\chi}_1^0$, $\tilde{\chi}_2^0 \to \tilde{\tau} \tau \to \tau \tau \tilde{\chi}_1^0$, and $\tilde{\chi}_2^0 \to \tilde{\nu}_{\tau} \nu_{\tau} \to \nu_{\tau} \nu_{\tau} \tilde{\chi}_1^0$.

We generate the point used in Table1 by the following process with MadGraph5 and Pythia6. In the proc_card.dat, we set the following information:

import model mssm -modelname;

generate p p > x1+ n2, (x1+ > sl3+ vt, sl3+ > tau+ n1), (n2 > sl3- tau+, sl3- > tau- n1) add process p p > x1+ n2, (x1+ > sl3+ vt, sl3+ > tau+ n1), (n2 > vt sv3, sv3 > vt n1) add process p p > x1+ n2, (x1+ > tau+ sv3, sv3 > vt n1), (n2 > sl3- tau+, sl3- > tau- n1) add process p p > x1+ n2, (x1+ > tau+ sv3, sv3 > vt n1), (n2 > vt sv3, sv3 > vt n1) add process p p > x1- n2, (x1- > sl3- vt, sl3- > tau- n1), (n2 > sl3- tau+, sl3- > tau- n1) add process p p > x1- n2, (x1- > sl3- vt, sl3- > tau- n1), (n2 > vt sv3, sv3 > vt n1) add process p p > x1- n2, (x1- > sl3- vt, sl3- > tau- n1), (n2 > vt sv3, sv3 > vt n1) add process p p > x1- n2, (x1- > tau- sv3, sv3 > vt n1), (n2 > vt sv3, sv3 > vt n1) add process p p > x1- n2, (x1- > tau- sv3, sv3 > vt n1), (n2 > vt sv3, sv3 > vt n1). In the run_card.dat, we set the following information and others are kept default: 50000 = nevents ! Number of unweighted events requested. In the param_card.dat, we set the following information and others are kept default: 1000015 300 # Msl3 1000016 300 # Msl3 1000016 300 # Msn3

- $1000023~600 \ \# \ Mneu2$
- $1000024 \ 600 \ \# \ Mch1$

pythia_card.dat is not changed.

We generate the point used in Table2 by the following process with MadGraph5 and Pythia6. In the proc_card.dat, we set the following information:

import model mssm -modelname;

generate p p > x1+ x1-, (x1+ > sl3+ vt, sl3+ > tau+ n1), (x1- > sl3- vt, sl3- > tau- n1) add process p p > x1+ x1-, (x1+ > tau+ sv3, sv3 > vt n1), (x1- > tau- sv3, sv3 > vt n1) add process p p > x1+ x1-, (x1+ > sl3+ vt, sl3+ > tau+ n1), (x1- > tau- sv3, sv3 > vt n1) add process p p > x1+ x1-, (x1+ > tau+ sv3, sv3 > vt n1), (x1- > sl3- vt, sl3- > tau- n1) In the run_card.dat, we set the following information and others are kept default: 50000 = nevents ! Number of unweighted events requested. In the param_card.dat, we set the following information and others are kept default: 1000015 300 # Msl3 1000016 300 # Msn3 1000022 0.0 # Mneu1 1000024 600 # Mch1

pythia_card.dat is not changed.

References

- [1] https://www.hepdata.net/record/79042.
- [2] https://www.hepdata.net/record/79043.

Table 1: The cut-flows of atlas_1708_07875 in SR-LowMass for $(m_{\tilde{\chi}_1^{\pm}}/m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0}) = (600 \text{ GeV}, 0 \text{ GeV})$. $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are wino dominated and $\tilde{\chi}_1^0$ is bino dominated. We do the validation according to the web [1] and begin our comparison at the step ≥ 2 medium τ , matched to trigger objects because we don't know how Total events was generated by ATLAS.

SR LowMass			
Production of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$			
$m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0} = 600 \text{ GeV}; m_{\tilde{\chi}_1^0} = 0 \text{ GeV}$			
100000			
ATLAS		CheckMATE	
events	efficiency	events	efficiency
33.5	-	33.5	-
24	71.6%	23.3	69.6%
22.2	92.5%	22.1	94.8%
21.3	95.9%	21.2	95.9%
13.3	62.4%	13.8	65.1%
11.8	88.7%	11.3	81.9%
_	AT events 33.5 24 22.2 21.3 13.3	Production of $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0} = 600$ Ge 10000 ATLAS events efficiency 33.5 - 24 71.6% 22.2 92.5% 21.3 95.9% 13.3 62.4%	Production of $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0}$ $m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{2}^{0}} = 600 \text{ GeV}; m_{\tilde{\chi}_{1}^{0}} = 0 \text{ GeV}$ 100000 ATLAS Check events efficiency events 33.5 - 33.5 24 71.6% 23.3 22.2 92.5% 22.1 21.3 95.9% 21.2 13.3 62.4% 13.8

Table 2: The cut-flows of atlas_1708_07875 in SR-HighMass for $(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (600 \text{ GeV}, 0 \text{ GeV})$. $\tilde{\chi}_1^{\pm}$ is wino dominated and χ_1^0 is bino dominated. We do the validation according to the web [2] and begin our comparison at the step >= 2 medium τ , matched to trigger objects because we don't know how Total events was generated by ATLAS.

Signal Region	SR HighMass			
Process	Production of $\tilde{\chi}_1^+ \tilde{\chi}_1^-$			
Point	$m_{\tilde{\chi}_1^{\pm}} = 600 \text{ GeV}; m_{\tilde{\chi}_1^0} = 0 \text{ GeV}$			
Generated Events	100000			
Selection	ATLAS		CheckMATE	
	events	efficiency	events	efficiency
$>= 2$ medium τ , matched to trigger objects	21.2	-	21.2	-
$>=1$ opposite sign τ pair	21	99.1%	20.9	98.6%
b-jet veto	20.3	96.7%	20.3	97.1%
Z-veto	19.7	97.0%	19.7	97.0%
at least one medium and one tight τ	16.3	82.7%	16.7	84.8%
$p_T, \tau_1 > 80 \text{ GeV}(\text{di-tau} + E_T^{miss} \text{ trigger only})$	16.1	98.8%	16.5	98.8%
$m(\tau_1,\tau_2) > 110 \text{ GeV}$	13.5	83.9%	15.2	92.1%
$E_T^{miss} > 110 \text{ GeV} (asymmetric di-tau trigger only})$	12.5	92.6%	12.7	83.6%
$m_{T2} > 90 \text{ GeV}$	10	80.0%	7.7	60.6%